1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
use rand_core;
use zeroize::Zeroize;

use crate::strobe::Strobe128;

fn encode_u64(x: u64) -> [u8; 8] {
    use byteorder::{ByteOrder, LittleEndian};

    let mut buf = [0; 8];
    LittleEndian::write_u64(&mut buf, x);
    buf
}

fn encode_usize_as_u32(x: usize) -> [u8; 4] {
    use byteorder::{ByteOrder, LittleEndian};

    assert!(x <= (u32::max_value() as usize));

    let mut buf = [0; 4];
    LittleEndian::write_u32(&mut buf, x as u32);
    buf
}

/// A transcript of a public-coin argument.
///
/// The prover's messages are added to the transcript using
/// [`append_message`](Transcript::append_message), and the verifier's
/// challenges can be computed using
/// [`challenge_bytes`](Transcript::challenge_bytes).
///
/// # Creating and using a Merlin transcript
///
/// To create a Merlin transcript, use [`Transcript::new()`].  This
/// function takes a domain separation label which should be unique to
/// the application.
///
/// To use the transcript with a Merlin-based proof implementation,
/// the prover's side creates a Merlin transcript with an
/// application-specific domain separation label, and passes a `&mut`
/// reference to the transcript to the proving function(s).
///
/// To verify the resulting proof, the verifier creates their own
/// Merlin transcript using the same domain separation label, then
/// passes a `&mut` reference to the verifier's transcript to the
/// verification function.
///
/// # Implementing proofs using Merlin
///
/// For information on the design of Merlin and how to use it to
/// implement a proof system, see the documentation at
/// [merlin.cool](https://merlin.cool), particularly the [Using
/// Merlin](https://merlin.cool/use/index.html) section.
#[derive(Clone, Zeroize)]
pub struct Transcript {
    strobe: Strobe128,
}

impl Transcript {
    /// Initialize a new transcript with the supplied `label`, which
    /// is used as a domain separator.
    ///
    /// # Note
    ///
    /// This function should be called by a proof library's API
    /// consumer (i.e., the application using the proof library), and
    /// **not by the proof implementation**.  See the [Passing
    /// Transcripts](https://merlin.cool/use/passing.html) section of
    /// the Merlin website for more details on why.
    pub fn new(label: &'static [u8]) -> Transcript {
        use crate::constants::MERLIN_PROTOCOL_LABEL;

        #[cfg(feature = "debug-transcript")]
        {
            use std::str::from_utf8;
            println!(
                "Initialize STROBE-128({})\t# b\"{}\"",
                hex::encode(MERLIN_PROTOCOL_LABEL),
                from_utf8(MERLIN_PROTOCOL_LABEL).unwrap(),
            );
        }

        let mut transcript = Transcript {
            strobe: Strobe128::new(MERLIN_PROTOCOL_LABEL),
        };
        transcript.append_message(b"dom-sep", label);

        transcript
    }

    /// Append a prover's `message` to the transcript.
    ///
    /// The `label` parameter is metadata about the message, and is
    /// also appended to the transcript.  See the [Transcript
    /// Protocols](https://merlin.cool/use/protocol.html) section of
    /// the Merlin website for details on labels.
    pub fn append_message(&mut self, label: &'static [u8], message: &[u8]) {
        let data_len = encode_usize_as_u32(message.len());
        self.strobe.meta_ad(label, false);
        self.strobe.meta_ad(&data_len, true);
        self.strobe.ad(message, false);

        #[cfg(feature = "debug-transcript")]
        {
            use std::str::from_utf8;

            match from_utf8(label) {
                Ok(label_str) => {
                    println!(
                        "meta-AD : {} || LE32({})\t# b\"{}\"",
                        hex::encode(label),
                        message.len(),
                        label_str
                    );
                }
                Err(_) => {
                    println!(
                        "meta-AD : {} || LE32({})",
                        hex::encode(label),
                        message.len()
                    );
                }
            }
            match from_utf8(message) {
                Ok(message_str) => {
                    println!("     AD : {}\t# b\"{}\"", hex::encode(message), message_str);
                }
                Err(_) => {
                    println!("     AD : {}", hex::encode(message));
                }
            }
        }
    }

    /// Deprecated.  This function was renamed to
    /// [`append_message`](Transcript::append_message).
    ///
    /// This is intended to avoid any possible confusion between the
    /// transcript-level messages and protocol-level commitments.
    #[deprecated(since = "1.1.0", note = "renamed to append_message for clarity.")]
    pub fn commit_bytes(&mut self, label: &'static [u8], message: &[u8]) {
        self.append_message(label, message);
    }

    /// Convenience method for appending a `u64` to the transcript.
    ///
    /// The `label` parameter is metadata about the message, and is
    /// also appended to the transcript.  See the [Transcript
    /// Protocols](https://merlin.cool/use/protocol.html) section of
    /// the Merlin website for details on labels.
    ///
    /// # Implementation
    ///
    /// Calls `append_message` with the 8-byte little-endian encoding
    /// of `x`.
    pub fn append_u64(&mut self, label: &'static [u8], x: u64) {
        self.append_message(label, &encode_u64(x));
    }

    /// Deprecated.  This function was renamed to
    /// [`append_u64`](Transcript::append_u64).
    ///
    /// This is intended to avoid any possible confusion between the
    /// transcript-level messages and protocol-level commitments.
    #[deprecated(since = "1.1.0", note = "renamed to append_u64 for clarity.")]
    pub fn commit_u64(&mut self, label: &'static [u8], x: u64) {
        self.append_u64(label, x);
    }

    /// Fill the supplied buffer with the verifier's challenge bytes.
    ///
    /// The `label` parameter is metadata about the challenge, and is
    /// also appended to the transcript.  See the [Transcript
    /// Protocols](https://merlin.cool/use/protocol.html) section of
    /// the Merlin website for details on labels.
    pub fn challenge_bytes(&mut self, label: &'static [u8], dest: &mut [u8]) {
        let data_len = encode_usize_as_u32(dest.len());
        self.strobe.meta_ad(label, false);
        self.strobe.meta_ad(&data_len, true);
        self.strobe.prf(dest, false);

        #[cfg(feature = "debug-transcript")]
        {
            use std::str::from_utf8;

            match from_utf8(label) {
                Ok(label_str) => {
                    println!(
                        "meta-AD : {} || LE32({})\t# b\"{}\"",
                        hex::encode(label),
                        dest.len(),
                        label_str
                    );
                }
                Err(_) => {
                    println!("meta-AD : {} || LE32({})", hex::encode(label), dest.len());
                }
            }
            println!("     PRF: {}", hex::encode(dest));
        }
    }

    /// Fork the current [`Transcript`] to construct an RNG whose output is bound
    /// to the current transcript state as well as prover's secrets.
    ///
    /// See the [`TranscriptRngBuilder`] documentation for more details.
    pub fn build_rng(&self) -> TranscriptRngBuilder {
        TranscriptRngBuilder {
            strobe: self.strobe.clone(),
        }
    }
}

/// Constructs a [`TranscriptRng`] by rekeying the [`Transcript`] with
/// prover secrets and an external RNG.
///
/// The prover uses a [`TranscriptRngBuilder`] to rekey with its
/// witness data, before using an external RNG to finalize to a
/// [`TranscriptRng`].  The resulting [`TranscriptRng`] will be a PRF
/// of all of the entire public transcript, the prover's secret
/// witness data, and randomness from the external RNG.
///
/// # Usage
///
/// To construct a [`TranscriptRng`], a prover calls
/// [`Transcript::build_rng()`] to clone the transcript state, then
/// uses [`rekey_with_witness_bytes()`][rekey_with_witness_bytes] to rekey the
/// transcript with the prover's secrets, before finally calling
/// [`finalize()`][finalize].  This rekeys the transcript with the
/// output of an external [`rand_core::RngCore`] instance and returns
/// a finalized [`TranscriptRng`].
///
/// These methods are intended to be chained, passing from a borrowed
/// [`Transcript`] to an owned [`TranscriptRng`] as follows:
/// ```
/// # extern crate merlin;
/// # extern crate rand_core;
/// # use merlin::Transcript;
/// # fn main() {
/// # let mut transcript = Transcript::new(b"TranscriptRng doctest");
/// # let public_data = b"public data";
/// # let witness_data = b"witness data";
/// # let more_witness_data = b"witness data";
/// transcript.append_message(b"public", public_data);
///
/// let mut rng = transcript
///     .build_rng()
///     .rekey_with_witness_bytes(b"witness1", witness_data)
///     .rekey_with_witness_bytes(b"witness2", more_witness_data)
///     .finalize(&mut rand_core::OsRng);
/// # }
/// ```
/// In this example, the final `rng` is a PRF of `public_data`
/// (as well as all previous `transcript` state), and of the prover's
/// secret `witness_data` and `more_witness_data`, and finally, of the
/// output of the thread-local RNG.
/// Note that because the [`TranscriptRng`] is produced from
/// [`finalize()`][finalize], it's impossible to forget
/// to rekey the transcript with external randomness.
///
/// # Note
///
/// Protocols that require randomness in multiple places (e.g., to
/// choose blinding factors for a multi-round protocol) should create
/// a fresh [`TranscriptRng`] **each time they need randomness**,
/// rather than reusing a single instance.  This ensures that the
/// randomness in each round is bound to the latest transcript state,
/// rather than just the state of the transcript when randomness was
/// first required.
///
/// # Typed Witness Data
///
/// Like the [`Transcript`], the [`TranscriptRngBuilder`] provides a
/// minimal, byte-oriented API, and like the [`Transcript`], this API
/// can be extended to allow rekeying with protocol-specific types
/// using an extension trait.  See the [Transcript
/// Protocols](https://merlin.cool/use/protocol.html) section of the
/// Merlin website for more details.
///
/// [rekey_with_witness_bytes]: TranscriptRngBuilder::rekey_with_witness_bytes
/// [finalize]: TranscriptRngBuilder::finalize
pub struct TranscriptRngBuilder {
    strobe: Strobe128,
}

impl TranscriptRngBuilder {
    /// Rekey the transcript using the provided witness data.
    ///
    /// The `label` parameter is metadata about `witness`.
    pub fn rekey_with_witness_bytes(
        mut self,
        label: &'static [u8],
        witness: &[u8],
    ) -> TranscriptRngBuilder {
        let witness_len = encode_usize_as_u32(witness.len());
        self.strobe.meta_ad(label, false);
        self.strobe.meta_ad(&witness_len, true);
        self.strobe.key(witness, false);

        self
    }

    /// Deprecated.  This function was renamed to
    /// [`rekey_with_witness_bytes`](Transcript::rekey_with_witness_bytes).
    ///
    /// This is intended to avoid any possible confusion between the
    /// transcript-level messages and protocol-level commitments.
    #[deprecated(
        since = "1.1.0",
        note = "renamed to rekey_with_witness_bytes for clarity."
    )]
    pub fn commit_witness_bytes(
        self,
        label: &'static [u8],
        witness: &[u8],
    ) -> TranscriptRngBuilder {
        self.rekey_with_witness_bytes(label, witness)
    }

    /// Use the supplied external `rng` to rekey the transcript, so
    /// that the finalized [`TranscriptRng`] is a PRF bound to
    /// randomness from the external RNG, as well as all other
    /// transcript data.
    pub fn finalize<R>(mut self, rng: &mut R) -> TranscriptRng
    where
        R: rand_core::RngCore + rand_core::CryptoRng,
    {
        let random_bytes = {
            let mut bytes = [0u8; 32];
            rng.fill_bytes(&mut bytes);
            bytes
        };

        self.strobe.meta_ad(b"rng", false);
        self.strobe.key(&random_bytes, false);

        TranscriptRng {
            strobe: self.strobe,
        }
    }
}

/// An RNG providing synthetic randomness to the prover.
///
/// A [`TranscriptRng`] is constructed from a [`Transcript`] using a
/// [`TranscriptRngBuilder`]; see its documentation for details on
/// how to construct one.
///
/// The transcript RNG construction is described in the [Generating
/// Randomness](https://merlin.cool/transcript/rng.html) section of
/// the Merlin website.
pub struct TranscriptRng {
    strobe: Strobe128,
}

impl rand_core::RngCore for TranscriptRng {
    fn next_u32(&mut self) -> u32 {
        rand_core::impls::next_u32_via_fill(self)
    }

    fn next_u64(&mut self) -> u64 {
        rand_core::impls::next_u64_via_fill(self)
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        let dest_len = encode_usize_as_u32(dest.len());
        self.strobe.meta_ad(&dest_len, false);
        self.strobe.prf(dest, false);
    }

    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
        self.fill_bytes(dest);
        Ok(())
    }
}

impl rand_core::CryptoRng for TranscriptRng {}

#[cfg(test)]
mod tests {
    use strobe_rs::SecParam;
    use strobe_rs::Strobe;

    use super::*;

    /// Test against a full strobe implementation to ensure we match the few
    /// operations we're interested in.
    struct TestTranscript {
        state: Strobe,
    }

    impl TestTranscript {
        /// Strobe init; meta-AD(label)
        pub fn new(label: &[u8]) -> TestTranscript {
            use crate::constants::MERLIN_PROTOCOL_LABEL;

            let mut tt = TestTranscript {
                state: Strobe::new(MERLIN_PROTOCOL_LABEL, SecParam::B128),
            };
            tt.append_message(b"dom-sep", label);

            tt
        }

        /// Strobe op: meta-AD(label || len(message)); AD(message)
        pub fn append_message(&mut self, label: &[u8], message: &[u8]) {
            // metadata = label || len(message);
            let mut metadata: Vec<u8> = Vec::with_capacity(label.len() + 4);
            metadata.extend_from_slice(label);
            metadata.extend_from_slice(&encode_usize_as_u32(message.len()));

            self.state.meta_ad(&metadata, false);
            self.state.ad(&message, false);
        }

        /// Strobe op: meta-AD(label || len(dest)); PRF into challenge_bytes
        pub fn challenge_bytes(&mut self, label: &[u8], dest: &mut [u8]) {
            let prf_len = dest.len();

            // metadata = label || len(challenge_bytes);
            let mut metadata: Vec<u8> = Vec::with_capacity(label.len() + 4);
            metadata.extend_from_slice(label);
            metadata.extend_from_slice(&encode_usize_as_u32(prf_len));

            self.state.meta_ad(&metadata, false);
            self.state.prf(dest, false);
        }
    }

    /// Test a simple protocol with one message and one challenge
    #[test]
    fn equivalence_simple() {
        let mut real_transcript = Transcript::new(b"test protocol");
        let mut test_transcript = TestTranscript::new(b"test protocol");

        real_transcript.append_message(b"some label", b"some data");
        test_transcript.append_message(b"some label", b"some data");

        let mut real_challenge = [0u8; 32];
        let mut test_challenge = [0u8; 32];

        real_transcript.challenge_bytes(b"challenge", &mut real_challenge);
        test_transcript.challenge_bytes(b"challenge", &mut test_challenge);

        assert_eq!(real_challenge, test_challenge);
    }

    /// Test a complex protocol with multiple messages and challenges,
    /// with messages long enough to wrap around the sponge state, and
    /// with multiple rounds of messages and challenges.
    #[test]
    fn equivalence_complex() {
        let mut real_transcript = Transcript::new(b"test protocol");
        let mut test_transcript = TestTranscript::new(b"test protocol");

        let data = vec![99; 1024];

        real_transcript.append_message(b"step1", b"some data");
        test_transcript.append_message(b"step1", b"some data");

        let mut real_challenge = [0u8; 32];
        let mut test_challenge = [0u8; 32];

        for _ in 0..32 {
            real_transcript.challenge_bytes(b"challenge", &mut real_challenge);
            test_transcript.challenge_bytes(b"challenge", &mut test_challenge);

            assert_eq!(real_challenge, test_challenge);

            real_transcript.append_message(b"bigdata", &data);
            test_transcript.append_message(b"bigdata", &data);

            real_transcript.append_message(b"challengedata", &real_challenge);
            test_transcript.append_message(b"challengedata", &test_challenge);
        }
    }

    #[test]
    fn transcript_rng_is_bound_to_transcript_and_witnesses() {
        use curve25519_dalek::scalar::Scalar;
        use rand_chacha::ChaChaRng;
        use rand_core::SeedableRng;

        // Check that the TranscriptRng is bound to the transcript and
        // the witnesses.  This is done by producing a sequence of
        // transcripts that diverge at different points and checking
        // that they produce different challenges.

        let protocol_label = b"test TranscriptRng collisions";
        let commitment1 = b"commitment data 1";
        let commitment2 = b"commitment data 2";
        let witness1 = b"witness data 1";
        let witness2 = b"witness data 2";

        let mut t1 = Transcript::new(protocol_label);
        let mut t2 = Transcript::new(protocol_label);
        let mut t3 = Transcript::new(protocol_label);
        let mut t4 = Transcript::new(protocol_label);

        t1.append_message(b"com", commitment1);
        t2.append_message(b"com", commitment2);
        t3.append_message(b"com", commitment2);
        t4.append_message(b"com", commitment2);

        let mut r1 = t1
            .build_rng()
            .rekey_with_witness_bytes(b"witness", witness1)
            .finalize(&mut ChaChaRng::from_seed([0; 32]));

        let mut r2 = t2
            .build_rng()
            .rekey_with_witness_bytes(b"witness", witness1)
            .finalize(&mut ChaChaRng::from_seed([0; 32]));

        let mut r3 = t3
            .build_rng()
            .rekey_with_witness_bytes(b"witness", witness2)
            .finalize(&mut ChaChaRng::from_seed([0; 32]));

        let mut r4 = t4
            .build_rng()
            .rekey_with_witness_bytes(b"witness", witness2)
            .finalize(&mut ChaChaRng::from_seed([0; 32]));

        let s1 = Scalar::random(&mut r1);
        let s2 = Scalar::random(&mut r2);
        let s3 = Scalar::random(&mut r3);
        let s4 = Scalar::random(&mut r4);

        // Transcript t1 has different commitments than t2, t3, t4, so
        // it should produce distinct challenges from all of them.
        assert_ne!(s1, s2);
        assert_ne!(s1, s3);
        assert_ne!(s1, s4);

        // Transcript t2 has different witness variables from t3, t4,
        // so it should produce distinct challenges from all of them.
        assert_ne!(s2, s3);
        assert_ne!(s2, s4);

        // Transcripts t3 and t4 have the same commitments and
        // witnesses, so they should give different challenges only
        // based on the RNG. Checking that they're equal in the
        // presence of a bad RNG checks that the different challenges
        // above aren't because the RNG is accidentally different.
        assert_eq!(s3, s4);
    }
}