1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
// -*- mode: rust; -*- // // This file is part of ed25519-dalek. // Copyright (c) 2017-2019 isis lovecruft // See LICENSE for licensing information. // // Authors: // - isis agora lovecruft <isis@patternsinthevoid.net> //! An ed25519 signature. use core::fmt::Debug; use curve25519_dalek::edwards::CompressedEdwardsY; use curve25519_dalek::scalar::Scalar; #[cfg(feature = "serde")] use serde::de::Error as SerdeError; #[cfg(feature = "serde")] use serde::de::Visitor; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "serde")] use serde::{Deserializer, Serializer}; use crate::constants::*; use crate::errors::*; /// An ed25519 signature. /// /// # Note /// /// These signatures, unlike the ed25519 signature reference implementation, are /// "detached"—that is, they do **not** include a copy of the message which has /// been signed. #[allow(non_snake_case)] #[derive(Copy, Eq, PartialEq)] pub struct Signature { /// `R` is an `EdwardsPoint`, formed by using an hash function with /// 512-bits output to produce the digest of: /// /// - the nonce half of the `ExpandedSecretKey`, and /// - the message to be signed. /// /// This digest is then interpreted as a `Scalar` and reduced into an /// element in ℤ/lℤ. The scalar is then multiplied by the distinguished /// basepoint to produce `R`, and `EdwardsPoint`. pub(crate) R: CompressedEdwardsY, /// `s` is a `Scalar`, formed by using an hash function with 512-bits output /// to produce the digest of: /// /// - the `r` portion of this `Signature`, /// - the `PublicKey` which should be used to verify this `Signature`, and /// - the message to be signed. /// /// This digest is then interpreted as a `Scalar` and reduced into an /// element in ℤ/lℤ. pub(crate) s: Scalar, } impl Clone for Signature { fn clone(&self) -> Self { *self } } impl Debug for Signature { fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result { write!(f, "Signature( R: {:?}, s: {:?} )", &self.R, &self.s) } } #[cfg(feature = "legacy_compatibility")] #[inline(always)] fn check_scalar(bytes: [u8; 32]) -> Result<Scalar, SignatureError> { // The highest 3 bits must not be set. No other checking for the // remaining 2^253 - 2^252 + 27742317777372353535851937790883648493 // potential non-reduced scalars is performed. // // This is compatible with ed25519-donna and libsodium when // -DED25519_COMPAT is NOT specified. if bytes[31] & 224 != 0 { return Err(SignatureError(InternalError::ScalarFormatError)); } Ok(Scalar::from_bits(bytes)) } #[cfg(not(feature = "legacy_compatibility"))] #[inline(always)] fn check_scalar(bytes: [u8; 32]) -> Result<Scalar, SignatureError> { // Since this is only used in signature deserialisation (i.e. upon // verification), we can do a "succeed fast" trick by checking that the most // significant 4 bits are unset. If they are unset, we can succeed fast // because we are guaranteed that the scalar is fully reduced. However, if // the 4th most significant bit is set, we must do the full reduction check, // as the order of the basepoint is roughly a 2^(252.5) bit number. // // This succeed-fast trick should succeed for roughly half of all scalars. if bytes[31] & 240 == 0 { return Ok(Scalar::from_bits(bytes)) } match Scalar::from_canonical_bytes(bytes) { None => return Err(SignatureError(InternalError::ScalarFormatError)), Some(x) => return Ok(x), }; } impl Signature { /// Convert this `Signature` to a byte array. #[inline] pub fn to_bytes(&self) -> [u8; SIGNATURE_LENGTH] { let mut signature_bytes: [u8; SIGNATURE_LENGTH] = [0u8; SIGNATURE_LENGTH]; signature_bytes[..32].copy_from_slice(&self.R.as_bytes()[..]); signature_bytes[32..].copy_from_slice(&self.s.as_bytes()[..]); signature_bytes } /// Construct a `Signature` from a slice of bytes. /// /// # Scalar Malleability Checking /// /// As originally specified in the ed25519 paper (cf. the "Malleability" /// section of the README in this repo), no checks whatsoever were performed /// for signature malleability. /// /// Later, a semi-functional, hacky check was added to most libraries to /// "ensure" that the scalar portion, `s`, of the signature was reduced `mod /// \ell`, the order of the basepoint: /// /// ```ignore /// if signature.s[31] & 224 != 0 { /// return Err(); /// } /// ``` /// /// This bit-twiddling ensures that the most significant three bits of the /// scalar are not set: /// /// ```python,ignore /// >>> 0b00010000 & 224 /// 0 /// >>> 0b00100000 & 224 /// 32 /// >>> 0b01000000 & 224 /// 64 /// >>> 0b10000000 & 224 /// 128 /// ``` /// /// However, this check is hacky and insufficient to check that the scalar is /// fully reduced `mod \ell = 2^252 + 27742317777372353535851937790883648493` as /// it leaves us with a guanteed bound of 253 bits. This means that there are /// `2^253 - 2^252 + 2774231777737235353585193779088364849311` remaining scalars /// which could cause malleabilllity. /// /// RFC8032 [states](https://tools.ietf.org/html/rfc8032#section-5.1.7): /// /// > To verify a signature on a message M using public key A, [...] /// > first split the signature into two 32-octet halves. Decode the first /// > half as a point R, and the second half as an integer S, in the range /// > 0 <= s < L. Decode the public key A as point A'. If any of the /// > decodings fail (including S being out of range), the signature is /// > invalid. /// /// However, by the time this was standardised, most libraries in use were /// only checking the most significant three bits. (See also the /// documentation for `PublicKey.verify_strict`.) #[inline] pub fn from_bytes(bytes: &[u8]) -> Result<Signature, SignatureError> { if bytes.len() != SIGNATURE_LENGTH { return Err(SignatureError(InternalError::BytesLengthError { name: "Signature", length: SIGNATURE_LENGTH, })); } let mut lower: [u8; 32] = [0u8; 32]; let mut upper: [u8; 32] = [0u8; 32]; lower.copy_from_slice(&bytes[..32]); upper.copy_from_slice(&bytes[32..]); let s: Scalar; match check_scalar(upper) { Ok(x) => s = x, Err(x) => return Err(x), } Ok(Signature { R: CompressedEdwardsY(lower), s: s, }) } } #[cfg(feature = "serde")] impl Serialize for Signature { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { serializer.serialize_bytes(&self.to_bytes()[..]) } } #[cfg(feature = "serde")] impl<'d> Deserialize<'d> for Signature { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d>, { struct SignatureVisitor; impl<'d> Visitor<'d> for SignatureVisitor { type Value = Signature; fn expecting(&self, formatter: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result { formatter.write_str("An ed25519 signature as 64 bytes, as specified in RFC8032.") } fn visit_bytes<E>(self, bytes: &[u8]) -> Result<Signature, E> where E: SerdeError, { Signature::from_bytes(bytes).or(Err(SerdeError::invalid_length(bytes.len(), &self))) } } deserializer.deserialize_bytes(SignatureVisitor) } }