1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
extern crate alloc;
use alloc::vec::Vec;
use core::iter;
use curve25519_dalek::ristretto::{CompressedRistretto, RistrettoPoint};
use curve25519_dalek::scalar::Scalar;
use generators::{BulletproofGens, PedersenGens};
#[derive(Serialize, Deserialize, Copy, Clone, Debug)]
pub struct BitCommitment {
pub(super) V_j: CompressedRistretto,
pub(super) A_j: RistrettoPoint,
pub(super) S_j: RistrettoPoint,
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug)]
pub struct BitChallenge {
pub(super) y: Scalar,
pub(super) z: Scalar,
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug)]
pub struct PolyCommitment {
pub(super) T_1_j: RistrettoPoint,
pub(super) T_2_j: RistrettoPoint,
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug)]
pub struct PolyChallenge {
pub(super) x: Scalar,
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct ProofShare {
pub(super) t_x: Scalar,
pub(super) t_x_blinding: Scalar,
pub(super) e_blinding: Scalar,
pub(super) l_vec: Vec<Scalar>,
pub(super) r_vec: Vec<Scalar>,
}
impl ProofShare {
pub(super) fn check_size(
&self,
expected_n: usize,
bp_gens: &BulletproofGens,
j: usize,
) -> Result<(), ()> {
if self.l_vec.len() != expected_n {
return Err(());
}
if self.r_vec.len() != expected_n {
return Err(());
}
if expected_n > bp_gens.gens_capacity {
return Err(());
}
if j >= bp_gens.party_capacity {
return Err(());
}
Ok(())
}
pub(super) fn audit_share(
&self,
bp_gens: &BulletproofGens,
pc_gens: &PedersenGens,
j: usize,
bit_commitment: &BitCommitment,
bit_challenge: &BitChallenge,
poly_commitment: &PolyCommitment,
poly_challenge: &PolyChallenge,
) -> Result<(), ()> {
use curve25519_dalek::traits::{IsIdentity, VartimeMultiscalarMul};
use inner_product_proof::inner_product;
use util;
let n = self.l_vec.len();
self.check_size(n, bp_gens, j)?;
let (y, z) = (&bit_challenge.y, &bit_challenge.z);
let x = &poly_challenge.x;
let zz = z * z;
let minus_z = -z;
let z_j = util::scalar_exp_vartime(z, j as u64);
let y_jn = util::scalar_exp_vartime(y, (j * n) as u64);
let y_jn_inv = y_jn.invert();
let y_inv = y.invert();
if self.t_x != inner_product(&self.l_vec, &self.r_vec) {
return Err(());
}
let g = self.l_vec.iter().map(|l_i| minus_z - l_i);
let h = self
.r_vec
.iter()
.zip(util::exp_iter(Scalar::from(2u64)))
.zip(util::exp_iter(y_inv))
.map(|((r_i, exp_2), exp_y_inv)| {
z + exp_y_inv * y_jn_inv * (-r_i) + exp_y_inv * y_jn_inv * (zz * z_j * exp_2)
});
let P_check = RistrettoPoint::vartime_multiscalar_mul(
iter::once(Scalar::one())
.chain(iter::once(*x))
.chain(iter::once(-self.e_blinding))
.chain(g)
.chain(h),
iter::once(&bit_commitment.A_j)
.chain(iter::once(&bit_commitment.S_j))
.chain(iter::once(&pc_gens.B_blinding))
.chain(bp_gens.share(j).G(n))
.chain(bp_gens.share(j).H(n)),
);
if !P_check.is_identity() {
return Err(());
}
let V_j = bit_commitment.V_j.decompress().ok_or(())?;
let sum_of_powers_y = util::sum_of_powers(&y, n);
let sum_of_powers_2 = util::sum_of_powers(&Scalar::from(2u64), n);
let delta = (z - zz) * sum_of_powers_y * y_jn - z * zz * sum_of_powers_2 * z_j;
let t_check = RistrettoPoint::vartime_multiscalar_mul(
iter::once(zz * z_j)
.chain(iter::once(*x))
.chain(iter::once(x * x))
.chain(iter::once(delta - self.t_x))
.chain(iter::once(-self.t_x_blinding)),
iter::once(&V_j)
.chain(iter::once(&poly_commitment.T_1_j))
.chain(iter::once(&poly_commitment.T_2_j))
.chain(iter::once(&pc_gens.B))
.chain(iter::once(&pc_gens.B_blinding)),
);
if t_check.is_identity() {
Ok(())
} else {
Err(())
}
}
}