1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
//! The `dealer` module contains the API for the dealer state while the dealer is
//! engaging in an aggregated multiparty computation protocol.
//!
//! For more explanation of how the `dealer`, `party`, and `messages` modules orchestrate the protocol execution, see
//! [the API for the aggregated multiparty computation protocol](../aggregation/index.html#api-for-the-aggregated-multiparty-computation-protocol).

use core::iter;

extern crate alloc;

use alloc::vec::Vec;

use curve25519_dalek::ristretto::RistrettoPoint;
use curve25519_dalek::scalar::Scalar;
use merlin::Transcript;

use errors::MPCError;
use generators::{BulletproofGens, PedersenGens};
use inner_product_proof;
use range_proof::RangeProof;
use transcript::TranscriptProtocol;

use rand_core::{CryptoRng, RngCore};

use util;

#[cfg(feature = "std")]
use rand::thread_rng;

use super::messages::*;

/// Used to construct a dealer for the aggregated rangeproof MPC protocol.
pub struct Dealer {}

impl Dealer {
    /// Creates a new dealer coordinating `m` parties proving `n`-bit ranges.
    pub fn new<'a, 'b>(
        bp_gens: &'b BulletproofGens,
        pc_gens: &'b PedersenGens,
        transcript: &'a mut Transcript,
        n: usize,
        m: usize,
    ) -> Result<DealerAwaitingBitCommitments<'a, 'b>, MPCError> {
        if !(n == 8 || n == 16 || n == 32 || n == 64) {
            return Err(MPCError::InvalidBitsize);
        }
        if !m.is_power_of_two() {
            return Err(MPCError::InvalidAggregation);
        }
        if bp_gens.gens_capacity < n {
            return Err(MPCError::InvalidGeneratorsLength);
        }
        if bp_gens.party_capacity < m {
            return Err(MPCError::InvalidGeneratorsLength);
        }

        // At the end of the protocol, the dealer will attempt to
        // verify the proof, and if it fails, determine which party's
        // shares were invalid.
        //
        // However, verifying the proof requires either knowledge of
        // all of the challenges, or a copy of the initial transcript
        // state.
        //
        // The dealer has all of the challenges, but using them for
        // verification would require duplicating the verification
        // logic.  Instead, we keep a copy of the initial transcript
        // state.
        let initial_transcript = transcript.clone();

        transcript.rangeproof_domain_sep(n as u64, m as u64);

        Ok(DealerAwaitingBitCommitments {
            bp_gens,
            pc_gens,
            transcript,
            initial_transcript,
            n,
            m,
        })
    }
}

/// A dealer waiting for the parties to send their [`BitCommitment`]s.
pub struct DealerAwaitingBitCommitments<'a, 'b> {
    bp_gens: &'b BulletproofGens,
    pc_gens: &'b PedersenGens,
    transcript: &'a mut Transcript,
    /// The dealer keeps a copy of the initial transcript state, so
    /// that it can attempt to verify the aggregated proof at the end.
    initial_transcript: Transcript,
    n: usize,
    m: usize,
}

impl<'a, 'b> DealerAwaitingBitCommitments<'a, 'b> {
    /// Receive each party's [`BitCommitment`]s and compute the [`BitChallenge`].
    pub fn receive_bit_commitments(
        self,
        bit_commitments: Vec<BitCommitment>,
    ) -> Result<(DealerAwaitingPolyCommitments<'a, 'b>, BitChallenge), MPCError> {
        if self.m != bit_commitments.len() {
            return Err(MPCError::WrongNumBitCommitments);
        }

        // Commit each V_j individually
        for vc in bit_commitments.iter() {
            self.transcript.append_point(b"V", &vc.V_j);
        }

        // Commit aggregated A_j, S_j
        let A: RistrettoPoint = bit_commitments.iter().map(|vc| vc.A_j).sum();
        self.transcript.append_point(b"A", &A.compress());

        let S: RistrettoPoint = bit_commitments.iter().map(|vc| vc.S_j).sum();
        self.transcript.append_point(b"S", &S.compress());

        let y = self.transcript.challenge_scalar(b"y");
        let z = self.transcript.challenge_scalar(b"z");
        let bit_challenge = BitChallenge { y, z };

        Ok((
            DealerAwaitingPolyCommitments {
                n: self.n,
                m: self.m,
                transcript: self.transcript,
                initial_transcript: self.initial_transcript,
                bp_gens: self.bp_gens,
                pc_gens: self.pc_gens,
                bit_challenge,
                bit_commitments,
                A,
                S,
            },
            bit_challenge,
        ))
    }
}

/// A dealer which has sent the [`BitChallenge`] to the parties and
/// is waiting for their [`PolyCommitment`]s.
pub struct DealerAwaitingPolyCommitments<'a, 'b> {
    n: usize,
    m: usize,
    transcript: &'a mut Transcript,
    initial_transcript: Transcript,
    bp_gens: &'b BulletproofGens,
    pc_gens: &'b PedersenGens,
    bit_challenge: BitChallenge,
    bit_commitments: Vec<BitCommitment>,
    /// Aggregated commitment to the parties' bits
    A: RistrettoPoint,
    /// Aggregated commitment to the parties' bit blindings
    S: RistrettoPoint,
}

impl<'a, 'b> DealerAwaitingPolyCommitments<'a, 'b> {
    /// Receive [`PolyCommitment`]s from the parties and compute the
    /// [`PolyChallenge`].
    pub fn receive_poly_commitments(
        self,
        poly_commitments: Vec<PolyCommitment>,
    ) -> Result<(DealerAwaitingProofShares<'a, 'b>, PolyChallenge), MPCError> {
        if self.m != poly_commitments.len() {
            return Err(MPCError::WrongNumPolyCommitments);
        }

        // Commit sums of T_1_j's and T_2_j's
        let T_1: RistrettoPoint = poly_commitments.iter().map(|pc| pc.T_1_j).sum();
        let T_2: RistrettoPoint = poly_commitments.iter().map(|pc| pc.T_2_j).sum();

        self.transcript.append_point(b"T_1", &T_1.compress());
        self.transcript.append_point(b"T_2", &T_2.compress());

        let x = self.transcript.challenge_scalar(b"x");
        let poly_challenge = PolyChallenge { x };

        Ok((
            DealerAwaitingProofShares {
                n: self.n,
                m: self.m,
                transcript: self.transcript,
                initial_transcript: self.initial_transcript,
                bp_gens: self.bp_gens,
                pc_gens: self.pc_gens,
                bit_challenge: self.bit_challenge,
                bit_commitments: self.bit_commitments,
                A: self.A,
                S: self.S,
                poly_challenge,
                poly_commitments,
                T_1,
                T_2,
            },
            poly_challenge,
        ))
    }
}

/// A dealer which has sent the [`PolyChallenge`] to the parties and
/// is waiting to aggregate their [`ProofShare`]s into a
/// [`RangeProof`].
pub struct DealerAwaitingProofShares<'a, 'b> {
    n: usize,
    m: usize,
    transcript: &'a mut Transcript,
    initial_transcript: Transcript,
    bp_gens: &'b BulletproofGens,
    pc_gens: &'b PedersenGens,
    bit_challenge: BitChallenge,
    bit_commitments: Vec<BitCommitment>,
    poly_challenge: PolyChallenge,
    poly_commitments: Vec<PolyCommitment>,
    A: RistrettoPoint,
    S: RistrettoPoint,
    T_1: RistrettoPoint,
    T_2: RistrettoPoint,
}

impl<'a, 'b> DealerAwaitingProofShares<'a, 'b> {
    /// Assembles proof shares into an `RangeProof`.
    ///
    /// Used as a helper function by `receive_trusted_shares` (which
    /// just hands back the result) and `receive_shares` (which
    /// validates the proof shares.
    fn assemble_shares(&mut self, proof_shares: &[ProofShare]) -> Result<RangeProof, MPCError> {
        if self.m != proof_shares.len() {
            return Err(MPCError::WrongNumProofShares);
        }

        // Validate lengths for each share
        let mut bad_shares = Vec::<usize>::new(); // no allocations until we append
        for (j, share) in proof_shares.iter().enumerate() {
            share
                .check_size(self.n, &self.bp_gens, j)
                .unwrap_or_else(|_| {
                    bad_shares.push(j);
                });
        }

        if bad_shares.len() > 0 {
            return Err(MPCError::MalformedProofShares { bad_shares });
        }

        let t_x: Scalar = proof_shares.iter().map(|ps| ps.t_x).sum();
        let t_x_blinding: Scalar = proof_shares.iter().map(|ps| ps.t_x_blinding).sum();
        let e_blinding: Scalar = proof_shares.iter().map(|ps| ps.e_blinding).sum();

        self.transcript.append_scalar(b"t_x", &t_x);
        self.transcript
            .append_scalar(b"t_x_blinding", &t_x_blinding);
        self.transcript.append_scalar(b"e_blinding", &e_blinding);

        // Get a challenge value to combine statements for the IPP
        let w = self.transcript.challenge_scalar(b"w");
        let Q = w * self.pc_gens.B;

        let G_factors: Vec<Scalar> = iter::repeat(Scalar::one()).take(self.n * self.m).collect();
        let H_factors: Vec<Scalar> = util::exp_iter(self.bit_challenge.y.invert())
            .take(self.n * self.m)
            .collect();

        let l_vec: Vec<Scalar> = proof_shares
            .iter()
            .flat_map(|ps| ps.l_vec.clone().into_iter())
            .collect();
        let r_vec: Vec<Scalar> = proof_shares
            .iter()
            .flat_map(|ps| ps.r_vec.clone().into_iter())
            .collect();

        let ipp_proof = inner_product_proof::InnerProductProof::create(
            self.transcript,
            &Q,
            &G_factors,
            &H_factors,
            self.bp_gens.G(self.n, self.m).cloned().collect(),
            self.bp_gens.H(self.n, self.m).cloned().collect(),
            l_vec,
            r_vec,
        );

        Ok(RangeProof {
            A: self.A.compress(),
            S: self.S.compress(),
            T_1: self.T_1.compress(),
            T_2: self.T_2.compress(),
            t_x,
            t_x_blinding,
            e_blinding,
            ipp_proof,
        })
    }

    /// Assemble the final aggregated [`RangeProof`] from the given
    /// `proof_shares`, then validate the proof to ensure that all
    /// `ProofShare`s were well-formed.
    ///
    /// This is a convenience wrapper around receive_shares_with_rng
    ///
    #[cfg(feature = "std")]
    pub fn receive_shares(self, proof_shares: &[ProofShare]) -> Result<RangeProof, MPCError> {
        self.receive_shares_with_rng(proof_shares, &mut thread_rng())
    }

    /// Assemble the final aggregated [`RangeProof`] from the given
    /// `proof_shares`, then validate the proof to ensure that all
    /// `ProofShare`s were well-formed.
    ///
    /// If the aggregated proof fails to validate, this function
    /// audits the submitted shares to determine which shares were
    /// invalid.  This information is returned as part of the
    /// [`MPCError`].
    ///
    /// If the proof shares are known to be trusted, for instance when
    /// performing local aggregation,
    /// [`receive_trusted_shares`](DealerAwaitingProofShares::receive_trusted_shares)
    /// saves time by skipping verification of the aggregated proof.
    pub fn receive_shares_with_rng<T: RngCore + CryptoRng>(
        mut self,
        proof_shares: &[ProofShare],
        rng: &mut T,
    ) -> Result<RangeProof, MPCError> {
        let proof = self.assemble_shares(proof_shares)?;

        let Vs: Vec<_> = self.bit_commitments.iter().map(|vc| vc.V_j).collect();

        // See comment in `Dealer::new` for why we use `initial_transcript`
        let transcript = &mut self.initial_transcript;
        if proof
            .verify_multiple_with_rng(self.bp_gens, self.pc_gens, transcript, &Vs, self.n, rng)
            .is_ok()
        {
            Ok(proof)
        } else {
            // Proof verification failed. Now audit the parties:
            let mut bad_shares = Vec::new();
            for j in 0..self.m {
                match proof_shares[j].audit_share(
                    &self.bp_gens,
                    &self.pc_gens,
                    j,
                    &self.bit_commitments[j],
                    &self.bit_challenge,
                    &self.poly_commitments[j],
                    &self.poly_challenge,
                ) {
                    Ok(_) => {}
                    Err(_) => bad_shares.push(j),
                }
            }
            Err(MPCError::MalformedProofShares { bad_shares })
        }
    }

    /// Assemble the final aggregated [`RangeProof`] from the given
    /// `proof_shares`, but skip validation of the proof.
    ///
    /// ## WARNING
    ///
    /// This function does **NOT** validate the proof shares.  It is
    /// suitable for creating aggregated proofs when all parties are
    /// known by the dealer to be honest (for instance, when there's
    /// only one party playing all roles).
    ///
    /// Otherwise, use
    /// [`receive_shares`](DealerAwaitingProofShares::receive_shares),
    /// which validates that all shares are well-formed, or else
    /// detects which party(ies) submitted malformed shares.
    pub fn receive_trusted_shares(
        mut self,
        proof_shares: &[ProofShare],
    ) -> Result<RangeProof, MPCError> {
        self.assemble_shares(proof_shares)
    }
}